

**Hitesh sir classes** 

Shop no 30, FF, Aranya Market sector 119 Noida

# ABHYAS PAPER 02 / JEE MAINS 2024

## **JEE main - Mathematics**

#### Time Allowed: 1 hour

Maximum Marks: 100

#### **General Instructions:**

- All questions are compulsory.
- There are 30 questions where the first 20 questions are MCQs and the next 10 questions are numerical.
- Section-A within each part is compulsory. Attempt any 5 questions from section-B within each part.
- You will get 4 marks for each correct response and 1 mark will be deducted for an incorrect answer.

## MATHS (Section-A)

### Attempt any 20 questions

| 1. | Consider a function $f:\mathbb{N} 	o \mathbb{R}$ , satisfying f(1) + 2f(                                                | $(2) + 3f(3) + + xf(x) = x(x + 1) f(x); x \ge 2 \text{ with } f(1) = 1.$                            | [4] |
|----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|
|    | Then $\frac{1}{f(2022)} + \frac{1}{f(2028)}$ is equal to                                                                |                                                                                                     |     |
|    | a) 8000                                                                                                                 | b) 8100                                                                                             |     |
|    | c) 8200                                                                                                                 | d) 8400                                                                                             |     |
| 2. | If $\alpha$ is the root of the equation $x^2 - x + 2 = 0$ then the                                                      | value of $\frac{6(-\alpha^3+2\alpha^2-\alpha)}{\alpha^5-3\alpha^4+3\alpha^3-\alpha^2}$ is equal to: | [4] |
|    | a) 3                                                                                                                    | b) 12                                                                                               |     |
|    | c) 6                                                                                                                    | d) 9                                                                                                |     |
| 3. | The number of triplets (x, y, z), where x, y, z are distinct non negative integers satisfying $x + y + z = 15$ , is [4] |                                                                                                     |     |
|    | a) 92                                                                                                                   | b) 114                                                                                              |     |
|    | c) 80                                                                                                                   | d) 136                                                                                              |     |
| 4. | The sum of the series $\sum\limits_{i=1}^{50} {}^{100}	extsf{C}_{50\text{-}i} {}^{50}	extsf{C}_{i}$ equals              |                                                                                                     | [4] |
|    | a) $({}^{100}C_{50})^2$                                                                                                 | b) <sup>150</sup> C <sub>50</sub>                                                                   |     |
|    | c) $({}^{100}C_{50})^2 - {}^{100}C_{50}$                                                                                | d) <sup>150</sup> C <sub>50</sub> - <sup>100</sup> C <sub>50</sub>                                  |     |
| 5. | For any three positive real numbers a, b and c, if 9(2)                                                                 | 5a <sup>2</sup> + b <sup>2</sup> ) + 25 (c <sup>2</sup> - 3ac) = 15b (3a + c), then                 | [4] |
|    | a) b, c and a are in AP                                                                                                 | b) b, c and a are in GP                                                                             |     |
|    | c) a, b and c are in GP                                                                                                 | d) a, b and c are in AP                                                                             |     |
| 6. | If $c \in [0,1]$ then the minimum value of $\int\limits_{0}^{4\pi/3}  \sin x - x ^2$                                    | - $c dx$ occurs when c is equal to :                                                                | [4] |
|    | a) $\frac{1}{\sqrt{2}}$                                                                                                 | b) $\frac{1}{4}$                                                                                    |     |
|    | c) $\frac{3}{4}$                                                                                                        | d) $\frac{1}{2}$                                                                                    |     |

| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The function $f(x) = \frac{\log(\pi + x)}{\log(e + x)}$ is                                                                                                                  |                                                                                                                                 | [4] |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) Decreasing on $(0, \infty)$                                                                                                                                              | b) Increasing on $(0, \infty)$                                                                                                  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) Decreasing on $(0, \frac{\pi}{e})$ , increasing on $(\frac{\pi}{e}, \infty)$                                                                                             | d) Increasing on $(0, \frac{\pi}{e})$ , decreasing on $(\frac{\pi}{e}, \infty)$                                                 |     |  |
| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\int \frac{\sin x + 8\cos x}{4\sin x + 6\cos x} \mathrm{dx} =$                                                                                                             |                                                                                                                                 | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) $2x + \log  2 \sin x + 3 \cos x  + c$                                                                                                                                    | b) $x + 2 \log  2 \sin x + 3 \cos x  + c$                                                                                       |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) $x + \frac{1}{2}\log 4\sin x + 6\cos x  + c$                                                                                                                             | d) $\frac{1}{2}\log 4\sin x + 6\cos x  + c$                                                                                     |     |  |
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Slope of a line passing through $P(2, 3)$ and intersecting the line, $x + y = 7$ at a distance of 4 units from P, is                                                        |                                                                                                                                 | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$<br>c) $\frac{1-\sqrt{5}}{-7}$                                                                                                            | b) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$<br>d) $\frac{\sqrt{5}-1}{7}$                                                                 |     |  |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | If P is any point on the circle $S_1 : x^2 + y^2 = 144$ and Q                                                                                                               | is on the circle S <sub>2</sub> : $x^2 + y^2 - 6x - 8y = 0$ , then sum of                                                       | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | maximum and minimum possible values of PQ, will be:                                                                                                                         |                                                                                                                                 |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) 22                                                                                                                                                                       | b) 44                                                                                                                           |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) 24                                                                                                                                                                       | d) 20                                                                                                                           |     |  |
| 11. If $(x_1, y_1)$ and $(x_2, y_2)$ are the end points of a latus rectum of the parabola $y^2 = 5x$ , then $4x_1x_2 + y_1y_2 = 5x_1 + y_1y_2 $ |                                                                                                                                                                             |                                                                                                                                 | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) 0                                                                                                                                                                        | <b>b</b> ) $\frac{5}{4}$                                                                                                        |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) 5                                                                                                                                                                        | d) 25                                                                                                                           |     |  |
| 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Let $y = y(x)$ be a solution curve of the differential equ                                                                                                                  | ation, $(1 - x^2y^2)dx = ydx + xdy$ .                                                                                           | [4] |  |
| If the line $x = 1$ intersects the curve $y = y(x)$ at $y = 2$ and the line $x = 2$ intersects the curve $y = y(x)$ at $y = \alpha$ then a value of $\alpha$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                 |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) $\frac{1+3e^2}{2(3e^2-1)}$                                                                                                                                               | b) $\frac{1-3e^2}{2(3e^2+1)}$                                                                                                   |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C) $\frac{3e^2}{2(3e^2+1)}$                                                                                                                                                 | d) $\frac{3e^2}{2(3e^2-1)}$                                                                                                     |     |  |
| 13. The equations of motion of a particle in parametric form are $x = 2t + 1$ , $y = 3t - 1$ , $z = 4t + 1$ . The equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             | rm are $x = 2t + 1$ , $y = 3t - 1$ , $z = 4t + 1$ . The equation of                                                             | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$                                                                                                                          | b) a straight line                                                                                                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) a circle                                                                                                                                                                 | d) Both circle and straight line                                                                                                |     |  |
| 14. The vector $\vec{a} = -\hat{i} + 2\hat{j} + \hat{k}$ is rotated through a right angle, passing through the y-axis in its wa resulting vector is $\vec{b}$ . Then the projection of $3\vec{a} + \sqrt{2}\vec{b}$ on $\vec{c} = 5\hat{i} + 4\hat{j} + 3\hat{k}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             | ht angle, passing through the y-axis in its way and the $ec{p}$ on $ec{c}=5\hat{i}+4\hat{j}+3\hat{k}$ is                        | [4] |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a) 1                                                                                                                                                                        | b) $3\sqrt{2}$                                                                                                                  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) $2\sqrt{3}$                                                                                                                                                              | d) $\sqrt{6}$                                                                                                                   |     |  |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | An aeroplane flies around a square, the sides of which<br>100 m/h on the first side, at 200 m/h on the second sid<br>side. The average speed of the aeroplane around the se | measure 100 miles each. The aeroplane covers at speed of<br>le. At 300 m/h the third side and 400 m/h on the fourth<br>quare is | [4] |  |

| a) 900 m/h | b) 200 m/h |
|------------|------------|
|------------|------------|

c) 192 m/h

17.

18.

19.

20.

21.

d) 195 m/h

16. Urn A contains 9 red balls and 11 white balls. Urn B contains 12 red balls and 3 white balls. One is to roll a single fair die. If the result is a one or a two, then one is to randomly select a ball from urn A. Otherwise one is to randomly select a ball from urn B. The probability of obtaining a red ball, is:

a) 
$$\frac{21}{35}$$
 b)  $\frac{41}{60}$   
c)  $\frac{35}{60}$  d)  $\frac{19}{60}$   
Let f:  $(-1, 1) \rightarrow R$  be such that f  $(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$  for  $\theta \in (0, \frac{\pi}{4}) \cup (\frac{\pi}{4}, \frac{\pi}{2})$ . Then the values of f $(\frac{1}{3})$  are: [4]  
a)  $1 \pm \sqrt{\frac{1}{2}}$  b)  $1 \pm \sqrt{\frac{2}{3}}$   
c)  $1 \pm \sqrt{\frac{3}{2}}$  d)  $1 \pm \sqrt{\frac{1}{3}}$   
The one which does not represent a hyperbola is: [4]  
a)  $(x - 1)(y - 3) = 3$  b)  $xy = 1$   
c)  $x^2 - y^2 = 0$  d)  $x^2 - y^2 = 5$   
If A and B are two sets, then  $A \cap (A \cup B)'$  is equal to [4]  
a)  $\phi$  b) A  
c) None of these d) B  
Let A be any  $3 \times 3$  invertible matrices. Then which one of the following is not always true? [4]  
a)  $adj (adj (A)) = |A| \cdot (adj (A))^{-1}$  b)  $adj (adj (A)) = |A| \cdot A$   
c)  $adj (adj (A)) = |A|^2 \cdot (adj (A))^{-1}$  d)  $adj (A) = |A| \cdot A^{-1}$   
MATHS (Section-B)  
Attempt any 5 questions  
The number of points, where the curve  $y = x^5 - 20x^3 + 50x + 2$  crosses the x-axis, is \_\_\_\_\_. [4]

- 22. Let  $g(x) = f\left[\frac{x}{f(x)}\right]$  where f(x) is a differentiable positive function on  $(0, \infty)$  such that f(1) = f'(1). Determine [4] g'(1)
- 23. Let  $\sqrt{3}\hat{i} + \hat{j}$ ,  $\hat{i} + \sqrt{3}\hat{j}$  and  $\beta\hat{i} + (1 \beta)\hat{j}$  respectively be the position vectors of the points A, B and C with [4] respect the origin O. If the distance of C from the bisectors of the acute angle between OA and OB is  $\frac{3}{\sqrt{2}}$ , then the sum of all possible values of  $\beta$  is \_\_\_\_\_.
- 24. If the area bounded by the curves  $f(x) = [\cos^{-1} |\cos x |]^2$ ,  $g(x) = [\cos^{-1} |\cos x |]$  and  $|x| = \frac{\pi}{2}$  is  $a\pi^3 + b\pi^2 + c$ , [4] then find the minimum value of (|a| + |b| + |c|).
- 25. Let p be the perpendicular distance of point A (-2,3,1) from the line passing through the point B (-3, 5, 2) which [4] makes equal angles with positive direction x, y and z axis. Then find the value of 30p<sup>2</sup>.
- 26. The probability that an event A happens in one trial of an experiment, is 0.4. Three independent trials of the experiments are performed. The probability that event A happens at least once, is \_\_\_\_\_.
- 27. Let  $a_1, a_2, a_3,...$  be terms of an arithmetic progression such that  $\frac{a_1+a_2+\ldots+a_p}{a_1+a_2+\ldots+a_q} = \frac{p^2}{q^2}$ ,  $p \neq q$  If  $\frac{a_6}{a_{21}} = \frac{m}{n}$  (where **[4]** m and n are in their lowest form), then find the value of (4m n).
- 28. In  $\triangle ABC$ , if sinA (sin A + cos B sin B) + cos A (cos A + sin B + cos B) = 1 + sin C and a = 4, b = 3, then find [4] the area of the  $\triangle ABC$ .
- 29. The number of matrices of order  $3 \times 3$ , whose entries are either 0 or 1 and the sum of all the entries is a prime [4]

3/4

number, is \_\_\_\_\_

30. Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If  $f(g(x)) = 8x^2 - 2x$ , and  $g(f(x)) = 4x^2$  [4] + 6x +1, then the value of f(2) + g(2) is \_\_\_\_\_.