

Hitesh sir classes

Shop no 30, FF, Aranya Market sector 119 Noida

PAPER 01 (2023-2024) /ICSE

Class 10 - Mathematics

Time Allowed: 2 hours and 30 minutes

Maximum Marks: 80

General Instructions:

- Answers to this Paper must be written on the paper provided separately.
- You will not be allowed to write during the first 15 minutes.
- This time is to be spent reading the question paper.
- The time given at the head of this Paper is the time allowed for writing the answers.
- Attempt all questions from Section A and any four questions from Section B.
- All work, including rough work, must be clearly shown and must be done on the same sheet as the rest of the answers.
- Omission of essential work will result in a loss of marks.
- The intended marks for questions or parts of questions are given in brackets []
- Mathematical tables are provided.

Section A

1.	Questi	ion 1 Choose the correct answers	to the questions from the given options:	[15]
	(a)	The selling price of the fan by th	ne retailer (excluding tax) is?	[1]
		a) ₹ 1650	b) ₹ 1800	
		c) ₹ 1848	d) ₹ 1500	
	(b)	If the roots of the equation $x^2 +$	2cx + ab = 0 are real and unequal, then the equation	[1]
		$x^2 - 2(a + b)x + a^2 + b^2 + 2c^2 =$	0 has	
		a) real root	b) no real roots	
		c) real and equal	d) equal root	
	(c)	When $ax^3 + 6x^2 + 4x + 5$ is divi	ded by $(x + 3)$, the remainder is -7.	[1]
		The value of constant a is		
		a) 2	b) -2	
		c) -3	d) 3	
	(d)	If α and β are the roots of the example $\begin{bmatrix} 0 & \alpha \\ \alpha & \beta \end{bmatrix}$ and $\begin{bmatrix} \beta+1 \\ -\beta \end{bmatrix}$	puation $x^2 + x - 6 = 0$ such that $\beta > \alpha$, then the product of the $\begin{bmatrix} 0 \\ \alpha \end{bmatrix}$ is	[1]
		a) $\begin{bmatrix} -5 & 4 \\ -9 & -2 \end{bmatrix}$	b) $\begin{bmatrix} 6 & 9 \\ -13 & -6 \end{bmatrix}$	

	c) $\begin{bmatrix} 5 & 4 \\ 9 & 2 \end{bmatrix}$	$ \begin{array}{ccc} d \end{pmatrix} \begin{bmatrix} 6 & 13 \\ 9 & 6 \end{bmatrix} $	
(e)	Five distinct positive integers are in arithmetic p	rogression with a positive common difference. If their	[1]
	sum is 10020, then the smallest possible value of	the last term is	
	a) 2007	b) 2004	
	c) 2006	d) 2002	
(f)	The point P(h, k) is reflected in the X-axis, then it (-8, 5), then the value of (h, k) is	t is reflected in the origin to P'. If P' has coordinate	[1]
	a) (-8, -5)	b) (8, 5)	
	c) (5, 8)	d) (-5, -8)	
(g)	Diagonal AC of a rectangle ABCD is produced to	the point E such that AC : $CE = 2 : 1$, AB = 8 cm	[1]
	and BC = 6 m. The length of DE is		
	a) $3\sqrt{17}$ cm	b) 15 cm	
	c) 13 cm	d) $2\sqrt{19}$ cm	
(h)	A sphere of radius a units is immersed completel	y in water contained in a right circular cone of semi-	[1]
	vertical angle 30° and water is drained off from t	he cone till its surface touches the sphere. Then, the	
	volume of water remaining in the cone will be		
	a) $\frac{5}{3}\pi a^2$	b) $\frac{5\pi}{3}a^{3}$	
	c) $\frac{\pi a^3}{3}$	d) $5\pi a^3$	
(i)	Solve the inequation $\left \frac{2}{x-4}\right > 1$, $x \neq 4$		[1]
	a) { $x : x \in (2, 4) \cup (4, 6), x \in R$ }	b) { $x : x \in [2, 4) \cup (4, 6), x \in R$ }	
	c) { $x : x \in [-2, 4) \cup (-4, 6], x \in R$ }	d) { $x : x \in$ (-2, 4) \cup (-4, 6), $x \in$ R}	
(j)	The probability that the minute hand lies from 5	to 15 min in the wall clock, is	[1]
	a) $\frac{1}{6}$	b) $\frac{5}{6}$	
	c) $\frac{1}{5}$	d) $\frac{1}{10}$	
(k)	The matrices A and B, such that $AB = O$, but A =	eq O and B $ eq$ O, are	[1]
	a) $A = \begin{bmatrix} -2 & -2 \\ 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\overset{ ext{b)}}{A} = egin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}, B = egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$	
	$\overset{\text{c)}}{A} = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}, B = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$	$\stackrel{ ext{d}}{=} egin{pmatrix} 2 & 2 \ 2 & 2 \end{bmatrix} B = egin{pmatrix} 1 & 1 \ -1 & -1 \end{bmatrix}$	
(l)	Join two points P(2, 2) and 0(4, 2) in the point P	and rotate the line PQ in anti-clockwise direction at	[1]
	an angle of 270°. Then, the new coordinates of p	oint Q and the area formed by this figure will be	
	a) (2, 4); 2.94 sq units	b) (4, 2); 4.92 sq units	
	c) (2, 4); 9.42 sq units	d) (4, 2); 9.42 sq units	
(m)	If P, Q, S and R are points on the circumference of triangle and PS is a diameter of the circle. Then,	of a circle of radius r, such that PQR is an equilateral the perimeter of the quadrilateral PQSR will be	[1]

a)
$$2(\sqrt{3} + 1)r$$
 b) $2\sqrt{3} + r$

2/6

		c) 2r	d) $2\sqrt{3}r$	
	(n)	If the ratio of mode and median of a certain data	a is 6 : 5, then the ratio of its mean and median is	[1]
		a) 10 : 9	b) 9 : 10	
		c) 10:8	d) 8 : 10	
	(0)	Assertion (A): Let the positive numbers a, b, c	be in A.P., then $\frac{1}{hc}$, $\frac{1}{qc}$, $\frac{1}{ch}$ are also in A.P.	[1]
		Reason (R): If each term of an A.P. is divided b	by abc, then the resulting sequence is also in A.P.	
		a) Both A and R are true and R is the	b) Both A and R are true but R is not the	
		correct explanation of A.	correct explanation of A.	
		c) A is true but R is false.	d) A is false but R is true.	
2.	Questi	ion 2		[12]
	(a)	Mr. Gupta opened a recurring deposit account in	a bank. He deposited ₹ 2,500 per month for 2 years.	[4]
		At the time of maturity, he got ₹67,500. Find:		
		i. the total interest earned by Mr. Gupta		
		ii. the rate of interest per annum.		
	(b)	Find the mean proportional of $(a^4 - b^4)^2$ and [(a ⁴)	$^{2} - b^{2})(a - b)]^{-2}$.	[4]
	(C)	Show that: $\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta} = 1 + \sec\theta$ cosec	θ	[4]
3.	Questi	ion 3		[13]
	(a)	A cloth having an area of 165 m ² is shaped into	the form of a conical tent of radius 5 m.	[4]
		i. How many students can sit in the tent, if a st	rudent on an average occupies $\frac{5}{7}$ m ² on the ground?	
		ii. Find the volume of the cone.		
	(b)	A and B are two points on the X and Y-axes, res	spectively. P(2, -3) is the mid-point of AB. Find the	[4]
			- vevie	
		-^	-τλαλιδ	

(c) Use graph paper for this question. Take 1 cm = 1 unit on both x and y axis.

(2, -3)

[5]

- i. Plot the following points on your graph sheets. A (-4, 0), B (-3, 2), C (0, 4), D (4, 1) and E (7, 3)
- ii. Reflect the points B, C, D and E on the x-axis and name them as B', C', D' and E' respectively
- iii. Join the points A, B, C, D, E, E', D', C', B' and A in order.
- iv. Name the closed figure formed.

i. coordinate of A and B.

ii. slope of line AB.iii. equation of line AB

Section B

Attempt any 4 questions

4. Question 4

(a) A shopkeeper bought an article with market price ₹1200 from the wholesaler at a discount of 10%. [3]
 The shopkeeper sells this article to the customer on the market price printed on it. If the rate of GST is 6%, then find:

i. GST paid by the wholesaler.

ii. Amount paid by the customer to buy the item.

- (b) The product of two successive multiples of 4 is 28 more than the first multiple. Find them. [3]
- (c) A survey regarding the heights (in cm) of 51 boys of class X of a school was conducted and the [4] following data was obtained

Heights (in cm)	Number of boys
Less than 140	4
Less than 145	11
Less than 150	29
Less than 155	40
Less than 160	46
Less than 165	51

Find the median height.

5. Question 5

- (a) Construct a 2 \times 2 matrix, whose elements are given by $a_{ij} = i \cdot j$. [3]
- (b) In the following figure, O is the centre of the circle and AB is a tangent to it at point B, if $\angle BDC = [3]$ 65°, Find $\angle BAO$.

(c) The polynomials $3x^3 - ax^2 + 5x - 13$ and $(a + 1)x^2 - 7x + 5$ leaves the same remainder when divided [4] by (x - 3). Find the value of a.

6. **Question 6**

(a) Find the ratio in which the point (-3, k) divides the line segment joining the points (-5, - 4) and (-2, 3). [3] Also, find the value of k.

А	P	B
(-5,-4)	(-3, k)	(2, 3)

- (b) If $\sqrt{3} \tan \theta = 3 \sin \theta$, then find the value of $\sin^2 \theta \cos^2 \theta$ [3]
- (c) Let S be the sum, P be the product and R be the sum of reciprocals of n terms in a GP. Prove that $P^2R^n = S^n$. [4]

7. Question 7

(a) Five years ago, a woman's age was the square of her son's age. After ten years, her age will be twice [5] that of her son's age. Find

[10]

[10]

[10]

[10]

i. the age of the son, five years ago

ii. the present age of the woman

(b) The marks obtained by 120 students in a test are given below:

Marks	Number of Students
0 - 10	5
10 - 20	9
20 - 30	16
30 - 40	22
40 - 50	26
50 - 60	18
60 - 70	11
70 - 80	6
80 - 90	4
90 - 100	3

Draw an ogive for the given distribution on a graph sheet.

(Use suitable scale for ogive to estimate the following)

i. the median.

ii. the number of students who obtained more than 75% marks in the test.

iii. the number of students who did not pass the test, if minimum marks required to pass is 40.

8. Question 8

- (a) In a game, the entry fee is ₹ 5. The game consists of tossing a coin 3 times. If one or two heads show, [3]
 Sweta gets her entry fee back. If she tosses 3 heads, she receives double the entry fee. Otherwise, she will loss. For tossing a coin three times, find the probability that she
 - i. losses the entry fee
 - ii. gets double entry fee
 - iii. just gets her entry fee
- (b) A hemispherical bowl of diameter 7.2 cm is filled completely with chocolate sauce. This sauce is poured into a inverted cone of radius 4.8 cm. Find the height of the cone.
- (c) In the given figure, AB is a diameter of the circle with centre O, DO || CB and $\angle DCB = 120^{\circ}$. [4]

i. ∠DAB

ii. ∠DBA

[5]

[10]

iii. ∠DBC

iv. ∠ADC

Also, show that $\triangle AOD$ is an equilateral triangle.

9. Question 9

- (a) One-third of a bamboo pole is buried in mud, one-sixth of it is in water and the part above the water is [3] greater than or equal to 3 units. Find the length of the shortest pole.
- (b) If the mode of the following series is 54, then find the value of f.

Class interval	0-15	15-30	30-45	45-60	60-75	75-90
Frequency	3	5	f	16	12	7

(c) In the given figure, T is the exterior point on the diagonal PR of a parallelogram PQRS. SR produced [4] meets OT at N and QR produced meets ST at M. Prove that MN || SQ.

10. **Question 10**

- (a) Arrange the ratios 2 : 3, 17 : 21, 11 : 14 and 5 : 7 in descending order of magnitude. [3]
- (b) Construct a tangents to a circle of radius 1.8 cm from a point on the concentric circle of radius 2.8 cm [3] and measure its length.
- (c) The shadow of a vertical tower on a level ground increases by 10 m, when the altitude of the sun [4] changes from 45° to 30°. Find the height of the tower correct to two decimal places.

in the second se

[10]

[3]

[10]