

Hitesh sir classes

Shop no 30, FF, Aranya Market sector 119 Noida

CALCULUS JEE PAPER 01

JEE main - Mathematics

Time Allowed: 1 hour and 30 minutes Maximum Marks: 100 **General Instructions:** Think Believe and solve If $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$, then b - 3a equals: [4] 1. b) 1 a) -6 c) 2 d) 6 If $f(x) = \lim_{n \to \infty} \frac{x^{3n} \sin x + \cos x}{x^{3n} + 2}$, then $f\left(\frac{\pi}{6}\right) + f\left(\frac{\pi}{3}\right)$ is [4] 2. a) $\frac{\sqrt{3}}{2}$ c) $\frac{3\sqrt{3}}{4}$ d) Let $f(x) = \left\{ egin{array}{cc} (x-1)^{rac{1}{2-x}}, & x > 1, x eq 2 \ k, & x = 2 \end{array} ight.$ [4] 3. The value of k for which f is continuous at x = 2 is a) 1 Ъ) _е-2 c) e⁻¹ d) e 4. A function $f : R \to R$ satisfies [4] i. $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ for all x, y such that $xy \neq 1$ ii. $\lim_{x o 0} rac{f(x)}{x} = 2.$ Then f'(1) a) is 0 b) is -1 c) is 1 d) does not exist [4] , g(x) = $e^{\lfloor e \rfloor}$ 5. Let $f(x) = e^{i}$ $x \in R$, where sgn(x) = -1, x < 0= 0, x = 0 = 1, x > 0and, { } and [] represent fractional part and greatest integer function respectively. If $h(x) = \log f(x) + \log g(x)$, then which of the following statement is correct?

a) $\lim_{x \to 0^+} h(x) = h(0)$ b) $\lim_{x \to 0^+} \frac{h(x) - 1}{x} = 1$ c) $\lim_{x \to 0^-} h(x) = 1$ d) $\lim_{x \to 0^+} h(x)$ does not exist

6.	Let $lpha$ (a) and eta (a) be the roots of the equation $(\sqrt[3]{1+a}-1)x^2-(\sqrt{1+a}-1)x+(\sqrt[6]{1+a}-1)=0$,		[4]
	where a > -1. Then, $\lim_{a o 0^+} lpha(a)$ and $\lim_{a o 0^+} eta(a)$ are		
	a) $-\frac{9}{2}$ and 3	b) $-\frac{7}{2}$ and 2	
	c) $-\frac{1}{2}$ and -1	d) $-\frac{5}{2}$ and 1	
7.	If the value of the integral $\int_{0}^{\frac{1}{2}} \frac{x^2}{(1-x^2)^{\frac{3}{2}}} dx$ is $\frac{k}{6}$, then k is equal to:		[4]
	a) $3\sqrt{2}+\pi$	b) $2\sqrt{2}-\pi$	
	c) $3\sqrt{2}-\pi$	d) $2\sqrt{2} + \pi$	
8.	Infinite rectangles each of width 1 unit and height $\left(\cdot \right)$	$\left(rac{1}{n}-rac{1}{n+1} ight)(n\in N)$ are constructed such that ends of	[4]
	exactly one diagonal of every rectangle lies along the curve $y = \frac{1}{x}$. The sum of areas of all such rectangles, is :		
	a) 1	b) $\frac{1}{2}$	
	c) $\frac{2}{3}$	d) $\frac{3}{4}$	
9.	Let $f: \left[0, \frac{\pi}{2}\right] \to R$ be continuous and satisfy $f'(x) =$	$\frac{1}{1+\cos x}$ for all $x \in \left(0, \frac{\pi}{2}\right)$. If f(0 = 3 then f $\left(\frac{\pi}{2}\right)$ has the	[4]
	value equal to:		
	a) none of these	b) 2	
	c) $\frac{13}{4}$	d) 4	
10.	The value of $\lim_{n \to \infty} \frac{(1^1 + 2^2 + \ldots + n^2)(1^3 + 2^3 + \ldots + n^3)(1^4 + 2^4 + \ldots + n^4)}{(1^5 + 2^5 + \ldots + n^5)^2}$ is equal to:		[4]
	a) $\frac{1}{5}$	b) $\frac{2}{5}$	
	c) $\frac{4}{5}$	d) $\frac{3}{5}$	
11.	If f(x) is differentiable and $\int_0^{t^2} x f(x) dx = rac{2}{5}t^5$ then	$f\left(\frac{4}{25}\right)$ equals	[4]
	a) $\frac{2}{5}$	b) $-\frac{5}{2}$	
	c) $\frac{5}{2}$	d) 1	
12.	The value of $\int_{-1}^{1} \min(x , x - 1 , x + 1) dx$ is		[4]
	a) 2	b) 0	
	c) -2	d) $\frac{1}{2}$	
13.	If y = y(x) satisfies the differential equation $8\sqrt{x}(\sqrt{9+\sqrt{x}})dy = (\sqrt{4+\sqrt{9+\sqrt{x}}})^{-1}dx, x > 0$ and		[4]
	$y(0) = \sqrt{7}$, then y(256) =		
	a) 16	b) 9	
	c) 80	d) 3	
14.	If the differential equation representing the family of all circles touching x-axis at the origin is $(x^2 - y^2)\frac{dy}{dx} = g(x)y$, then $g(x)$ equals:		[4]
	a) _{2x} ²	b) 2x	
	c) $\frac{1}{2}x$	d) $\frac{1}{2}x^2$	
15	Let $y = y(x)$ be the solution curve of the differential	2	[4]

15. Let y = y(x) be the solution curve of the differential, $(y^2 - x) \frac{dy}{dx} = 1$, satisfying y(0) = 1. This curve. This [4]

2/3

curve intersects the x-axis at a point whose abscissa is:

a) -e b) 2 - e

The solution of the differential equation, $rac{dy}{dx} = (x-y)^2$, when y(1) = 1, is 16.

a)
$$-\log_e \left| \frac{1+x-y}{1-x+y} \right| = x+y-2$$

b) $\log_e \left| \frac{2-x}{2-y} \right| = x-y$
c) $-\log_e \left| \frac{1-x+y}{1+x-y} \right| = 2(x-1)$
d) $\log_e \left| \frac{2-y}{2-x} \right| = 2(y-1)$

The range of function f (x) = sgn (sin x) + sgn (cos x) + sgn (tan x) + sgn (cot x), $x \neq \frac{n\pi}{2}$ ($n \in I$) is : 17. [4] [Note: sgn k denotes signum function of k.]

18. Let
$$f'(x) = \frac{x}{(1+x^n)^{1/n}}$$
 for $n \ge 2$ and $g(x) = \underbrace{(\text{fofo...of})}_{f \text{ occurs } n \text{ times}} (x)$. Then $\int x^{n-2} g(x) dx$ equals. [4]

a)
$$\frac{1}{n(n+1)}(1+nx^n)^{1+\frac{1}{n}} + K$$

b) $\frac{1}{n(n-1)}(1+nx^n)^{1-\frac{1}{n}} + K$
c) $\frac{1}{n+1}(1+nx^n)^{1+\frac{1}{n}} + K$
d) $\frac{1}{n-1}(1+nx^n)^{1-\frac{1}{n}} + K$
19. If $f(x) = \{x\} + \left\{x + \left[\frac{x}{1+x^2}\right]\right\} + \left\{x + \left[\frac{x}{1+2x^2}\right]\right\} + \dots + \left\{x + \left[\frac{x}{1+99x^2}\right]\right\}$ then value of $[f(\sqrt{3})]$ is: [4]
Note : [k] and {k} denote greatest integer and fractional part functions of k respectively.

a) 17 c) 5050 d) 4950

The domain of the function f defined as $f(x) = \log_{10}[1 - \log_{10}(x^2 - 5x + 16)]$ is 20.

- b) [2, 3]d) [2, 3) a) (2, 3]
- c) (2, 3)

Let f be a differentiable function satisfying the functional rule $f(xy) = f(x) + f(y) + \frac{x+y-1}{xy} \forall x, y > 0$ and f'(1) = 2. [4] 21. Find the value of $[f(e^{100})]$.

Note: [k] denotes the greatest integer less than or equal to k.

Let $f: (0, 1) \rightarrow (0, 1)$ be a differentiable function such that $f'(x) \neq 0$ for all $x \in (0, 1)$ and $f(\frac{1}{2}) = \frac{\sqrt{3}}{2}$. If $f(x) = \frac{1}{2}$ [4] 22. $\lim_{t \to x} \frac{\int_0^t \sqrt{1 - f^2(s)} ds - \int_0^x \sqrt{1 - f^2(s)} ds}{f(t) - f(x)}, \text{ then the value of } f\left(\frac{1}{4}\right) \text{ equals } \frac{\sqrt{m}}{4} \text{ where } m \in \mathbb{N}. \text{ Find the value of } m.$

- If $f: R \to R$ is a continuous and differentiable function such that, $\int_{-1}^{x} f(t) + f'''(3) \int_{x}^{0} dt = \int_{1}^{x} t^{3} dt f'(1) \int_{x}^{2} t^{2} dt$ 23. [4] dt + f"(2) $\int_3^x t$ dt, then find the value of f'(4).
- Let y'(x) + y(x) g'(x) = g(x) g'(x), y(0) = 0, $x \in \mathbb{R}$, where f'(x) denotes $\frac{df(x)}{dx}$ and g(x) is a given non-constant [4] 24. differentiable function on R with g(0) = g(2) = 0. Then, the value of y(2) is
- 25. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b\}$ be two sets. Write total number of onto functions from A to B. [4]

[4]

[4]