

Hitesh sir classes

Shop no 30, FF, Aranya Market sector 119 Noida

VECTOR AND 3-D JEE BY HITESH SIR

JEE main - Mathematics

Section A

1.	The equation of a plane containing the line of intersection of the planes $2x - y - 4 = 0$ and $y + 2z - 4 = 0$ and passing through the point (1, 1, 0) is		[4]
	a) $x + 3y + 2 = 4$	b) x - 3y - 2z = - 2	
	c) 2x - z = 2	d) x - y - z = 0	
2.	If the points (1, 1, k) and (-3, 0, 1) be equidistant	t from the plane $3x + 4y - 12z + 13 = 0$, then k =	[4]
	a) 4	b) 1	
	c) 2	d) 0	
3.	Given that A (1, -1, 1), B (3, 2, 2), C (1, 2, 3) and which is parallel to the plane $3x - 2y + 4z = 1$ an segments is intersected by the plane?	d D (3, 0, 1) are four points. Consider the equation of a plane d passing through (2, -1, 1). Which of the following line	[4]
	a) None of these	b) AC	
	c) BD	d) BC	
4.	The distance of the point (1, -2, 3) from the plan	e x - y + z = 5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ is:	[4]
	a) $\frac{7}{5}$	b) 1	
	c) 7	d) $\frac{1}{7}$	
5.	Let θ_1 , θ_2 , θ_3 be the angles made by a line with the coordinate planes. Then $\sum_{i=1}^3 \cos^2 \theta_i$ equals:		[4]
	a) 3	b) 1	
	c) 0	d) 2	
6.	The length of the perpendicular from the point (2, -1, 4) on the straight line $\frac{x+3}{10} = \frac{y-2}{-7} = \frac{z}{1}$ is		[4]
	a) greater than 3 but less than 4	b) greater than 4	
	c) greater than 2 but less than 3	d) less than 2	
7.	A plane passes through (1, - 2, 1)and is perpendidistance of the plane from the point (1, 2, 2) is	cular to two planes $2x - 2y + z = 0$ and $x - y + 2z = 4$, then the	[4]
	a) $\sqrt{2}$	b) 1	
	c) 0	d) $2\sqrt{2}$	
_			

8. If the point $(2, \alpha, \beta)$ lies on the plane which passes through the points (3, 4, 2) and (7, 0, 6) and is perpendicular **[4]** to the plane 2x - 5y = 15, then $2\alpha - 3\beta$ is equal to

9. If A = (2, 3, 4), B = (4, 7, 14) and P = (λ , 0, 0) are three points such that the distance of point P from the plane [4] bisecting line AB at right angles is 11 units, then λ , satisfies the equation:

- a) $x^2 58x + 64 = 0$ b) $x^2 - 116x - 266 = 0$ c) $x^2 + 116x - 266 = 0$ d) $x^2 + 58x - 64 = 0$
- 10. The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y 2z = 5 and [4] 3x 6y 2z = 7 is
 - a) 14x + 2y 15z = 1c) 14x + 2y + 15z = 31d) 14x - 2y + 15z = 27 $x - 1 - \frac{y - k}{2} - \frac{x - 3}{2} - \frac{y - 1}{2}$
- 11. If the lines $\frac{x-1}{2} = \frac{y-k}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-1}{k} = z$ intersect, then the value of k is: [4]

b) 4

c) -2 d) 2

a) 1

12. The mirror image of the point (1, 2, 3) in a plane is $\left(-\frac{7}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$. Which of the following points lies on this **[4]** plane?

- a) (-1, -1, -1) c) (-1, -1, 1) d) (1, -1, 1)
- 13. Two-line $\frac{x-3}{1} = \frac{y+1}{3} = \frac{z-6}{-1}$ and $\frac{x+5}{7} = \frac{y-2}{-6} = \frac{z-3}{4}$ intersect at the point R. The reflection of R in the xy- [4] plane has coordinates
 - a) (2, 4, 7) b) (- 2, 4, 7) c) (2, - 4, - 7) d) (2, - 4, 7)
- 14. Perpendicular are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1} = \frac{z}{3}$ to the plane x + y + z = 3. The feet of [4] perpendiculars lie on the line
 - a) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$ b) $\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}$ c) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$ d) $\frac{x}{2} = \frac{y-1}{-7} = \frac{z-2}{5}$

15. The equation of the plane, which passes through y-axis and is perpendicular to the line $\frac{x-5}{\cos \theta} = \frac{y+1}{0} = \frac{z-1}{\sin \theta}$, is: [4]

- a) $x \sin \theta + z \cos \theta = 0$ b) $x \cos \theta + z \sin \theta = 0$ c) $x \cos \theta + y \sin \theta = 0$ d) $y \cos \theta + z \sin \theta = 0$
- 16. Let P be a plane passing through the points (2, 1, 0), (4, 1, 1) and (5, 0, 1) and R be any point (2, 1, 6). Then the **[4]** image of R in the plane P is:
 - a) (6, 5, -2) c) (3, 4, -2) d) (6, 5, 2)
- 17. If d_1 , d_2 , d_3 denote the distances of the plane 2x 3y + 4z + 2 = 0 from the planes 2x 3y + 4z + 6 = 0, 4x 6y +[4] 8z + 3 = 0 and 2x - 3y + 4z - 6 = 0 respectively, then:

a)
$$d_1 + 16d_2 = 0$$
 b) $d_1 - 2d_2 + 3d_3 = \sqrt{29}$

	c) $8d_2 = d_1$	d) $d_1 + 8d_2 + d_3 = 0$	
18.	The shortest distance between the lines $\frac{x-1}{0} = \frac{y+1}{-1}$	$=\frac{z}{1}$ and x + y + z + 1 = 0, 2x - y + z + 3 = 0 is:	[4]
	a) $\frac{1}{\sqrt{3}}$	b) $\frac{1}{2}$	
	c) $\frac{1}{\sqrt{2}}$	d) 1	
19.	If the plane 2x - y + 2z + 3 = 0 has the distances $\frac{1}{3}$ a + 2z + μ = 0, respectively, then the maximum value	nd $\frac{2}{3}$ units from the planes 4x - 2 y + 4z + λ = 0 and 2x - y of λ + μ is equal to	[4]
	a) 15	b) 5	
	c) 13	d) 9	
20.	The distance of the point having position vector $-\hat{i}$ (2,3, - 4) and parallel to the vector $6\hat{i} + 3\hat{j} - 4\hat{k}$ is	$+ 2 \hat{j} + 6 \hat{k}$ from the straight line passing through the point	[4]
	a) 6	b) $2\sqrt{13}$	
	c) 7	d) $4\sqrt{3}$	
21.	The plane which bisects the line segment joining the which one of the following points?	points (-3, -3, 4) and (3, 7, 6) at right angles, passes through	[4]
	a) (2, 1, 3)	b) (4,1, -2)	
	c) (-2, 3, 5)	d) (4, - 1, 7)	
22.	The angle between the lines whose direction cosines = 0 is:	are given by the equations $l + m + n = 0$ and $2Im + 2ln - mn$	[4]
	a) $\frac{\pi}{2}$	b) $\frac{\pi}{4}$	
	c) $\frac{\pi}{3}$	d) $\frac{3\pi}{4}$	
23.	A perpendicular is drawn from a point on the line $\frac{x-2}{2}$ of the perpendicular Q also lies on the plane x - y + z	$\frac{1}{z} = \frac{y+1}{-1} = \frac{z}{1}$ to the plane x + y + z = 3 such that the foot z = 3. Then, the coordinates of Q are	[4]
	a) (-1, 0, 4)	b) (4, 0, -1)	
	c) (2, 0, 1)	d) (1, 0, 2)	
24.	The angle between the planes $2x + y + z = 6$ and a pl $2z = 1$ is:	ane perpendicular to the planes $2x + 3y - z = 7$ and $x - y + 3y - z = 7$	[4]
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	
	c) $\frac{\pi}{3}$	d) $\frac{\pi}{6}$	
25.	If O is the origin and OP = 3 with direction ratios -1	, 2, -2, then co-ordinates of P are	[4]
	a) $\left(-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)$	b) (1, 2, 2)	
	c) (-3, 6, -9)	d) (-1, 2, -2)	
26.	Let $\vec{\alpha} = 3\hat{i} + \hat{j}$ and $\vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k}$. If $\vec{\beta} = \vec{\beta}_1 - \vec{\alpha}$, then $\vec{\beta}_1 \times \vec{\beta}_2$ is equal to	– \dot{eta}_2 , where \dot{eta}_1 is parallel to $ec{lpha}$ and \dot{eta}_2 is perpendicular to	[4]
	a) $=rac{1}{2}(-3\hat{i}+9\hat{j}+5\hat{k})$	b) $3\hat{i}-9\hat{j}-5\hat{k}$	
	c) $rac{1}{2}(\hat{3i}-\hat{9j}+\hat{5k})$	d) $(-3\hat{i}+9\hat{j}+5\hat{k})$	

a) 32 c) 24 Let $\vec{a} = \hat{i} - \hat{j}, \vec{b} = b_1\vec{i} + b_2\hat{j} + b_3\hat{k}, \vec{c} = 2\hat{i} + 2\hat{k}$ a) $\frac{1}{4}(\hat{i} + \hat{j} - 8\hat{k})$ c) $\frac{1}{4}(\hat{i} + \vec{j} + 8\hat{k})$ If the vectors \vec{a}, \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let $\vec{a}, \vec{b}, \vec{c}$ be three non-collinear vectors in a plane	b) 8 d) 16 $2\hat{j} - i$ and $b_1 = b_2$. Then vector \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ is b) $\frac{1}{2}(\hat{i} + \hat{j} - 4\hat{k})$ d) $\frac{1}{2}(\hat{i} + \hat{j} + 4\hat{k})$ d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4] [4]
c) 24 Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = b_1\vec{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = 2\hat{i} + 2\hat{k}$ a) $\frac{1}{4}(\hat{i} + \hat{j} - 8\hat{k})$ c) $\frac{1}{4}(\hat{i} + \vec{j} + 8\hat{k})$ If the vectors \vec{a} , \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	d) 16 $2\hat{j} - i$ and $b_1 = b_2$. Then vector \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ is b) $\frac{1}{2}(\hat{i} + \hat{j} - 4\hat{k})$ d) $\frac{1}{2}(\hat{i} + \hat{j} + 4\hat{k})$ d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4] [4]
Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = b_1 \vec{i} + b_2 \hat{j} + b_3 \hat{k}$, $\vec{c} = 2\hat{i} + 2\hat{k}$ a) $\frac{1}{4}(\hat{i} + \hat{j} - 8\hat{k})$ c) $\frac{1}{4}(\hat{i} + \vec{j} + 8\hat{k})$ If the vectors \vec{a} , \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	$2\hat{j} - i$ and $b_1 = b_2$. Then vector \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ is b) $\frac{1}{2}(\hat{i} + \hat{j} - 4\hat{k})$ d) $\frac{1}{2}(\hat{i} + \hat{j} + 4\hat{k})$ d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4]
a) $\frac{1}{4}(\hat{i} + \hat{j} - 8\hat{k})$ c) $\frac{1}{4}(\hat{i} + \hat{j} + 8\hat{k})$ If the vectors \vec{a} , \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	b) $\frac{1}{2}(\hat{i} + \hat{j} - 4\hat{k})$ d) $\frac{1}{2}(\hat{i} + \hat{j} + 4\hat{k})$ d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4]
c) $\frac{1}{4}(\hat{i} + \hat{j} + 8\hat{k})$ If the vectors \vec{a} , \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	d) $\frac{1}{2}(\hat{i} + \hat{j} + 4\hat{k})$ d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4]
If the vectors \vec{a} , \vec{b} and \vec{c} from the sides BC, CA and a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	d AB respectively of a \triangle ABC, then b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	[4]
a) $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$ c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	b) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$ d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	
c) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$ Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane	d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a}$	
Let \vec{a} , \vec{b} , \vec{c} be three non-collinear vectors in a plane		
	e such that $ ec{a} $ = 1, $ ec{b} $ = 3 and $ ec{c} = \sqrt{10}.$ If $ec{a} imes ec{c} = lpha$ and	[4]
$ec{\mathbf{b}} imesec{\mathbf{c}}=eta$ where, $lpha,eta\in\left[rac{\pi}{2},\pi ight]$, then $lpha+eta$ equa	als:	
a) $\frac{3\pi}{2}$	b) $\frac{7\pi}{6}$	
C) $\frac{7\pi}{4}$	d) $\frac{4\pi}{3}$	
If $ar{a},ar{b}$ are $ec{c}$ unit vectors satisfying $ ec{a}-ec{b} ^2+ ec{b}-ec{c} ^2$	$ \vec{c} ^2+ ec{c}-ec{a} ^2=9$, then $ 3ec{a}+3ec{b}+5ec{c} $ is equal to	[4]
a) 0	b) 3	
c) 1	d) 2	
A vector $\vec{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}(\alpha, \beta \in \mathbf{R})$ lies in the bisects the angle between \vec{b} and \vec{c} , then:	e plane of the vectors, $ec{b}=\hat{i}+\hat{j}$ and $ec{c}=\hat{i}-\hat{j}$ + $4\hat{k}.$ If $ec{a}$	[4]
a) $\vec{a} \cdot \hat{k} + 4 = 0$	b) $\vec{a} \cdot \hat{k} + 2 = 0$	
c) $\vec{a} \cdot \hat{i} + 3 = 0$	d) $\vec{a} \cdot \hat{i} + 1 = 0$	
If $ \vec{a} = 2$, $ \vec{b} = 3$ and $ 2\vec{a} - \vec{b} = 5$, then $ 2\vec{a} + \vec{b} $ e	quals:	[4]
a) 7	b) 1	
c) 17	d) 5	
If $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} is equal to		[4]
a) $\hat{i}-\hat{j}+\hat{k}$	b) \hat{i}	
c) $2\hat{i}$	d) $2\hat{j}-\hat{k}$	
Let $ec{a}=2\hat{i}+\hat{j}-2\hat{k}$ and $ec{b}=\hat{i}+\hat{j}$. if $ec{c}$ is a vec	ctor such that $ec{a}\cdotec{c}= ec{c} , ec{c}-ec{a} =2\sqrt{2}$ and the angle	[4]
between $(ec{a} imesec{b})$ and $ec{c}$ is 30°, then $ (ec{a} imesec{b}) imesec{c} $:	is equal	
a) $\frac{2}{3}$	b) 3	
c) 2	d) $\frac{3}{2}$	
Let \hat{a} and \hat{c} be unit vectors at an angle $\frac{\pi}{3}$ with each $[\hat{a}\hat{b}\hat{c}]$ is equal to:	h other. If $(\hat{a} imes (\hat{b} imes \hat{c})) \cdot (\hat{a} imes \hat{c}) =$ 5, then the value of	[4]
a) 5	b) 10	
	If $ \vec{a} = 2$, $ \vec{b} = 3$ and $ 2\vec{a} - \vec{b} = 5$, then $ 2\vec{a} + \vec{b} $ e a) 7 c) 17 If $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$ a) $\hat{i} - \hat{j} + \hat{k}$ c) $2\hat{i}$ Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. if \vec{c} is a vector between $(\vec{a} \times \vec{b})$ and \vec{c} is 30° , then $ (\vec{a} \times \vec{b}) \times \vec{c} $ a) $\frac{2}{3}$ c) 2 Let \hat{a} and \hat{c} be unit vectors at an angle $\frac{\pi}{3}$ with each [$\hat{a}\hat{b}\hat{c}$] is equal to: a) 5	If $ \vec{a} = 2$, $ \vec{b} = 3$ and $ 2\vec{a} - \vec{b} = 5$, then $ 2\vec{a} + \vec{b} $ equals: a) 7 b) 1 c) 17 d) 5 If $\vec{a} = (\hat{i} + \hat{j} + \hat{k}), \vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} is equal to a) $\hat{i} - \hat{j} + \hat{k}$ b) \hat{i} c) $2\hat{i}$ d) $2\hat{j} - \hat{k}$ Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. if \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = \vec{c} , \vec{c} - \vec{a} = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is 30° , then $ (\vec{a} \times \vec{b}) \times \vec{c} $ is equal a) $\frac{2}{3}$ b) 3 c) 2 d) $\frac{3}{2}$ Let \hat{a} and \hat{c} be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\hat{a} \times (\hat{b} \times \hat{c})) \cdot (\hat{a} \times \hat{c}) = 5$, then the value of $[\hat{a}\hat{b}\hat{c}]$ is equal to: a) 5 b) 10

4/7

37.	Let $ec q=\hat i+\hat j-2\hat k$, $ec r=2\hat i-\hat j+2\hat k$ and $ec p$ is a unit vector, then the maximum value of $[ec p$		[4]
	a) 1	b) $3\sqrt{3}$	
	c) $3\sqrt{5}$	d) 7	
38.	If $ec{a},ec{b},ec{c}$ are non-coplanar unit vectors :	such that $ec{{f a}} imes(ec{b} imesec{c})=rac{(ec{b}+ec{c})}{\sqrt{2}}$, then the angle between $ec{a}$ and $ec{b}$ is	[4]
	a) $\frac{\pi}{4}$	b) $\frac{3\pi}{4}$	
	c) $\frac{\pi}{2}$	d) <i>π</i>	
39.	For any three vectors $ec{a},ec{b},ec{c}$, the value of	of $(ec{a}-ec{b})\cdot(ec{b}-ec{c}) imes(ec{c}-ec{a})$ is	[4]
	a) $2\left[ar{a} ec{b} ec{c} ight]$	b) $- \vec{a} \vec{b} \vec{c} $	
	c) $ \vec{a} \vec{b} \vec{c} $	d) 0	
40.	Let $ec{a}=\sqrt{3}\hat{i}+\hat{j},ec{b}=\hat{i}+\sqrt{3}\hat{j}$ and $ec{a}$	$ec{e}=2\sqrt{2}\hat{i}-\sqrt{2}\hat{j}$ be the position vectors of A, B and C with respect to	[4]
	the origin O, respectively, then the distance of C from the bisector of the acute angle of $\stackrel{ ightarrow}{OA}$ and $\stackrel{ ightarrow}{OB}$ is		
	a) 6 units	b) 2 units	
	c) 3 units	d) 1 units	
41.	The magnitude of the projection of the	vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing	[4]
	the vectors $i + j + k$ and $i + 2j + 3k$,	, is:	
	a) $\sqrt{\frac{3}{2}}$	b) $\frac{\sqrt{3}}{2}$	
	c) $3\sqrt{6}$	d) $\sqrt{6}$	
42.	If $ec{a}=2ec{i}+\hat{j}+3\hat{k}$, $ec{a} imesec{b}=\hat{i}+\hat{k}$ and	ld $ec{a} \cdot ec{b} = 1$, then $ ec{b} $ is equal to	[4]
	a) $\sqrt{17}$	b) $\sqrt{14}$	
	c) $\frac{\sqrt{15}}{14}$	d) $\frac{\sqrt{17}}{14}$	
43.	If ABCDEF is a regular hexagon and ${ m A}$	$\overrightarrow{\mathbf{B}} = \overrightarrow{a}, \overrightarrow{\mathbf{BC}} = \overrightarrow{b}, ext{then } \overrightarrow{\mathbf{CD}} ext{ is equal to}$	[4]
	a) $\vec{b} - \vec{a}$	b) $ec{a}-ec{b}$	
	c) none of these	d) $ec{a}+ec{b}$	
44.	Let $ec{a}=\hat{i}$ - \hat{j} , $ec{b}=\hat{i}+\hat{j}+\hat{k}$ and $ec{c}$ be a vector	vector such that $ec{a} imesec{c}+ec{b}=ec{0}$ and $ec{a}.ec{c}$ = 4, then $ ec{c} ^2$ is equal to	[4]
	a) $\frac{19}{2}$	b) 8	
	c) 9	d) $\frac{17}{2}$	
45.	Let $ec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}, ec{b}=b_1\hat{i}+$	$b_2\hat{j}+b_3\hat{k}$ and $ec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$ be three non zero vectors such	[4]
	that \vec{c} is a unit vector perpendicular to both the vectors \vec{a} and \vec{b} and if the angles between \vec{a} and \vec{b} is $\frac{\pi}{3}$, then		
	$\begin{bmatrix} \vec{a}+b & b+\vec{c} & \bar{c}+\bar{a} \end{bmatrix}^2$ is		
	a) $\frac{1}{4} \vec{a} ^2 \vec{b} ^2$	b) $\frac{3}{4} \vec{a} ^2 \vec{b} ^2$	
	c) 1	d) $3 \vec{a} ^2 \vec{b} ^2$	
46.	If lines $x = ay + b$, $z = cy + d$ and $x = a'$	z + b, $y = c'z + d'$ are perpendicular, then	[4]
	a) bb' + cc' + 1 = 0	b) $ab' + bc' + 1 = 0$	
	c) $aa' + c + c' = 0$	d) $cc' + a + a' = 0$	

47. Angle between vectors \vec{a} and \vec{b} , where \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying \vec{a} .		unit vectors satisfying $ec{a}+ec{b}+\sqrt{3}ec{c}=ec{0}$	[4]
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	
	c) $\frac{\pi}{3}$	d) $\frac{\pi}{6}$	
48.	Let $ec{a}=\hat{i}+\hat{j}+\sqrt{2}\hat{k}$, $ec{b}=b_1\hat{i}+b_2\hat{j}+\sqrt{2}\hat{k}$ and	$ec{c}=5\hat{i}+\hat{j}+\sqrt{2}\hat{k}$ be three vectors such that the	[4]
	projection vector of \vec{b} on \vec{a} is \vec{a} . If \vec{a} + \vec{b} is perpendicular to \vec{c} , then $ \vec{b} $ is equal to		
	a) 4	b) $\sqrt{22}$	
	c) 6	d) $\sqrt{32}$	
49.	If the length of the perpendicular from the point $(\beta, 0, \beta)(\beta \neq 0)$ to the line, $\frac{x}{1} = \frac{y-1}{0} = \frac{z+1}{-1}$ is $\sqrt{\frac{3}{2}}$, then β is		[4]
	equal to		
	a) -2	b) 2	
	c) 1	d) -1	
50.	In a parallelogram ABCD, $ \stackrel{ ightarrow}{ m AB} =ec{a}, \stackrel{ ightarrow}{ m AD} =ec{b}$ and	$ec{ m AC}ec{ m C}ec{ m C}ec{ m c}$, then $ec{ m DB}\cdotec{ m AB}$ has the value	[4]
	a) $rac{1}{3} \Big(ec{b} ^2 + ec{c} ^2 - ec{a} ^2 \Big)$	b) $\frac{1}{2} \left(3 \vec{a} ^2 + \vec{b} ^2 - \vec{c} ^2 \right)$	
	c) $\frac{1}{2} \left(\vec{a} ^2 - \vec{b} ^2 + \vec{c} ^2 \right)$	d) $\frac{1}{2} \left(\vec{a} ^2 + \vec{b} ^2 + \vec{c} ^2 \right)$	
51.	Let $\alpha = (\lambda - 2)\vec{a} + \vec{b}$ and $\beta = (4\lambda - 2)\vec{a} + 3\vec{b}$ be	e two given vectors where vectors \vec{a} and \vec{b} are non-collinear.	[4]
	The value of λ for which vectors $lpha$ and eta are colline	ar is	
	a) -4	b) -3	
	c) 4	d) 3	
52.	The value of a , so that the volume of parallelopiped :	formed by $a\hat{i}+(a+1)\hat{j}+\hat{k}$, $\hat{j}+a^2\hat{k}$ and $a\hat{i}+\hat{k}$	[4]
	becomes minimum, is		
	a) $\frac{\sqrt{3}}{2}$	b) 0	
	c) $\frac{3}{4}$	d) $-\frac{3}{4}$	
53.	Let $ec{\mathbf{a}}=\hat{\mathbf{i}}-2\hat{\mathbf{j}}+3\hat{\mathbf{k}};$ $ec{\mathbf{b}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-4\hat{\mathbf{k}};$ $ec{\mathbf{c}}=4\hat{\mathbf{i}}-3\hat{\mathbf{k}}$	$3\hat{\mathbf{j}}+6\hat{\mathbf{k}}$; $ec{\mathbf{d}}=3\hat{\mathbf{i}}-6\hat{\mathbf{j}}-5\hat{\mathbf{k}}$ then the value of	[4]
	$(ec{\mathbf{a}} imesec{\mathbf{b}})\cdot(ec{\mathbf{c}} imesec{\mathbf{d}})$ is equal to:		
	a) 392	b) 214	
	c) 342	d) 476	
	Se	action B	
54.	Find the distance of the point (2, 3, 4) from the plane $\frac{y-2}{2}$	23x + 2y + 2z + 5 = 0, measured parallel to the line	[4]
	$\frac{x+3}{6} = \frac{y-2}{6} = \frac{z}{2}.$	$(2\hat{i}, 2\hat{i})$ is second to the start	[4]
55.	Find the value of in for which the line $r = (i + 2k)$ $\vec{r} \cdot (m\hat{i} + 3\hat{j} + \hat{k}) = 4$	$+ \lambda(2i - mj - 3\kappa)$ is parallel to the plane	[4]
56.	If $4x + 4y - \lambda z = 0$ is the equation of the plane through	gh the origin that contains the line $\frac{x-1}{2} = \frac{y+1}{2} = \frac{z}{4}$. Find	[4]
	the value of λ .	2 3 4	
57.	If the origin is the centriod of a triangle ABC having	vertices A (a, 1, 3), B (-2, b, -5) and C (4, 7, c). find the	[4]

- 57. If the origin is the centriod of a triangle ABC having vertices A (a, 1, 3), B (-2, b, -5) and C (4, 7, c), find the **[4]** value of b.
- 58. Write the distances of the point (7, -2, 3) from YZ-planes.

6 / 7

[4]

- 59. Let $\vec{a} = -\hat{i} \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is:
- 60. Consider the set of eight vectors $V = \{a\hat{i} + \hat{j} + c\hat{k} : a, b, c \in \{-1, 1\}\}$. Three non-coplanar vectors can be [4] chosen from V in 2^p ways. Then p is: