

Hitesh sir classes (maths)

9717101190

PAPER 04 (2023)

Class 12 - Mathematics

Maximum Marks: 60

General Instructions: All questions are compulsory All the very best

Time Allowed: 2 hours

2.

5.

Read -Think -Believe and then solve

Section A

- 1. If the set A contains 5 elements and the set B contains 6 elements, then the number of one one and onto mappings from A to B is
 [1]
 - a) none of these b) 720 c) 120 The value of $\sin^{-1}\left(\cos\left(\frac{43\pi}{5}\right)\right)$ is a) $-\frac{\pi}{10}$ c) $\frac{3\pi}{5}$ b) $\frac{-7\pi}{5}$ d) $\frac{\pi}{10}$ (1]

b) 4 × 3

d) 3 × 4

- 3. If A is 3×4 matrix and B is a matrix such that $A^T B$ and BA^T are both defined. Then, B is of the type [1]
 - a) 4×4 c) 3×3
- 4. Let A be a square matrix of order 3. If det. A = 2 then the value of det. (adj. A^3) is equal to:
 - a) $_{2^{6}}$ c) $_{2^{3}}$ If $f(x) = \begin{cases} \frac{\sin(\cos x) - \cos x}{(\pi - 2x)^{2}} & , x \neq \frac{\pi}{2} \\ k & , x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then k is equal to
 - a) 1 b) -1 c) 0 d) $\frac{1}{2}$
- 6. Let $f(x) = (\sin(\tan^{-1} x) + \sin(\cot^{-1} x))^2 1$, |x| > 1. If $\frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} (\sin^{-1} (f(x)))^2 = \frac{\pi}{6}$, they $y(-\sqrt{3})$ is **[1]** equal to:
 - a) $\frac{5\pi}{6}$ b) $\frac{\pi}{3}$
 - c) $-\frac{\pi}{6}$ d) $\frac{2\pi}{3}$

9717101190

[1]

[1]

7. The corner points of the feasible region determined by the system of linear inequalities are (0, 0), (4, 0), (2, 4), [1] and (0, 5). If the maximum value of z = ax + by, where a, b > 0 occurs at both (2, 4) and (4, 0), then:

c) a = 2b

Section B

8.	Let A = R - {2} and B = R - {1}. If f : A \rightarrow B is a mapping defined by $f(x) = \frac{x-1}{x-2}$, Show that f is bijective.	[2]
9.	Find the minimum value of n for which $ an^{-1}rac{n}{\pi}>rac{\pi}{4}, n\in N$.	[2]
	$\begin{bmatrix} 2 & 3 & -5 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 \end{bmatrix}$	[2]
10.	If A = $[a_{ij}] = \begin{bmatrix} 1 & 4 & 9 \end{bmatrix}$ and B = $[b_{ij}] = \begin{bmatrix} -3 & 4 \end{bmatrix}$ then find $a_{11} b_{11} + a_{22} b_{22}$	
	$\begin{bmatrix} 0 & 7 & -2 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix}$	
11	Evaluate the determinant $\begin{bmatrix} 2 & 3 & -2 \\ 1 & 2 & 3 \end{bmatrix}$ by expanding it along first column	[2]
11.	$\begin{bmatrix} 1 & 2 & 3 \\ -2 & 1 & -3 \end{bmatrix}$ by expanding it along first column.	
12.	If the system of equations	[2]
	x = cy + bz	
	y = az + cx	
	z = bx + ay	
	has a negativistic solution, show that $a^2 + b^2 + a^2 + 2aba = 1$	
	has a non-university solution, show that $a^2 + b^2 + c^2 + 2abc - 1$	[0]
13.	If $y = a^x + e^x + x^a$, find $\frac{dy}{dx}$ at $x = a$	[2]
14.	Let I be any interval disjoint from [-1, 1]. Prove that the function f given by $f(x) = x + \frac{1}{x}$ is increasing on I.	[2]
15.	Separate [0, $\pi/2$] into subintervals in which $f(x) = \sin 3x$ is increasing or decreasing.	[2]
16.	Prove that $\int\limits_{0}^{\pi} \sin^{2m}x \cos^{2m+1}x dx = 0$, where m is a positive integer.	[2]
17.	Integrate the function $e^{3\log x} \left(x^4 + 1 ight)^{-1}$	[2]
18.	Find the general solution of the differential equation: $\sin \frac{dy}{dx} + (\cos x)y = \cos x \sin^2 x$	[2]
Section C		
19.	Find the local maxima and local minima, if any. Find also the local maximum and the local minimum values, as	[3]
	the case may be: $f(x) = \sin^4 x + \cos^4 x$, $0 < x < \frac{\pi}{2}$	
20.	If [•] denotes the greatest integer function, then find the value of $\int_{1}^{2} [3x] dx$	[3]
	Section D	
21.	Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{22}$ of the volume of the	[5]
	sphere.	1-1
22.	Evaluate the definite integral $\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$.	[5]
23.	Evaluate $\int_0^{\pi} \frac{x}{2x^2 + 2x^2} dx$.	[5]
24.	Find a particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 4x \cdot \cos ec x$	[5]
	Given that $y = 0$ when $x = \frac{\pi}{2}$	
25.	Show that the minimum of Z occurs at more than two points.	[5]
	Maximize Z = x + y subject to $x-y \leq -1, -x+y \leq 0, x,y \geq 0$.	