

Hitesh sir classes (maths)

9717101190

VECTOR & 3D ABHYAS 01

Class 12 - Mathematics

Section A	
1. ABCD is a parallelogram with AC and BD as diagonals. Then, $\overrightarrow{AC} - \overrightarrow{BD} =$	
a) $\overrightarrow{_{3AB}}$	b) \overrightarrow{AB}
c) $\overrightarrow{4AB}$	d) $\overrightarrow{2AB}$
2. $[\hat{i} \hat{j} \hat{k}] = ?$	
a) 3	b) 1
c) 2	d) 0
3. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then the components of \vec{a} are	
a) $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{3}$	b) $\frac{1}{3}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
c) $\frac{1}{3}, \frac{1}{\sqrt{3}}, \frac{1}{2}$	d) $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
4. Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and \vec{c} be a vector such that $\vec{a} \times \vec{c} + \vec{b} = \vec{0}$ and $\vec{a} \cdot \vec{c} = 4$, then $ \vec{c} ^2$ is equal to	
a) $\frac{19}{2}$	b) 8
c) 9	d) $\frac{17}{2}$
5. The vector $2\hat{j} - \hat{k}$ lies	
a) in the plane of XZ	b) along the X-axis
c) in the plane of XY	d) in the plane of YZ
6. Let $\vec{a} = \hat{i} + 2\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + \lambda\hat{j} + 4\hat{k}$ and $\vec{c} = 2\hat{i} + 4\hat{j} + (\lambda^2 - 1)\hat{k}$ be coplanar vectors. Then, the non-zero	
vector $\vec{a} imes \vec{c}$ is	
a) $-10\hat{\mathbf{i}}+5\hat{\mathbf{j}}$	b) $-14\hat{i}+5\hat{j}$
c) $-10\hat{i}-5\hat{j}$	d) $-14\hat{i}-5\hat{j}$
7. The unit vector perpendicular to the vectors $\hat{i}-\hat{j}$ and $\hat{i}+\hat{j}$ forming a right-handed system is	
a) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$	b) $-\hat{k}$
c) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$	d) \hat{k}
8. $[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}] + (\vec{a} \cdot \vec{b})^2 =$	
a) $ ec{a} ^2 + ec{b} ^2$	b) $2 \vec{a} ^2 + \vec{b} ^2$
c) $\overrightarrow{a} + \overrightarrow{b}^2$	d) $\overrightarrow{ \mathbf{a} ^2} \overrightarrow{ \mathbf{b} ^2}$

9. The value of $(ec{a} imesec{b})^2$ is

a)
$$|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$$

b) $|\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})$
c) $|\vec{a}|^2 + |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$
d) $|\vec{a}|^2 + |\vec{b}|^2 - \vec{a} \cdot \vec{b}$

10. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then Let $\vec{a} + \vec{b}$ is a unit vector if

a)
$$\theta = \frac{\pi}{3}$$

b) $\theta = \frac{2\pi}{3}$
c) $\theta = \frac{\pi}{2}$
d) $\theta = \frac{\pi}{4}$

Section B

11. If $\vec{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\vec{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$, then find the value of λ , so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors. 12. Find the unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$

- 13. If \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ find the angle between \vec{a} and \vec{b}
- 14. Vectors drawn from the origin O to the points A, B and C are respectively \vec{a}, \vec{b} and $4\vec{a} 3\vec{b}$. Find \overrightarrow{AC} and \overrightarrow{BC} .
- 15. Find the values of x and y if the vectors $\vec{a} = 3\hat{i} + x\hat{j} \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpendicular vectors of equal magnitude.
- 16. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} \hat{k}$ are given vectors, then find a vector \vec{b} satisfying the equations $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$ Section C
- 17. If the lines $x = 1 3\lambda$, $y = 2 + k\lambda$, $z = 3 + 2\lambda$ and $x = 1 + 3k\lambda$, $y = 5 + \lambda$, $z = 6 5\lambda$. are at right angles, then k is equal to:

b) 0

d) 1

a)
$$\frac{5}{4}$$

b) $-\frac{10}{7}$
c) $\frac{10}{7}$
d) $-\frac{5}{4}$

18. If a vector makes angles α , β and γ with the x axis, y axis and z axis respectively then the value of $(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma)$ is

```
a) 2
```

- c) 3
- 19. ABCD is a parallelogram. The position vector of the points A, B and C are $3\hat{i} \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} 4\hat{k}$ and $-\hat{i} + \hat{j} + 2\hat{k}$ respectively. The equation of line BD is:

a) $\hat{i}-2\hat{j}+8\hat{k}+\lambda(3\hat{j}+4\hat{k})$.	b) $\hat{i}+2\hat{j}-4\hat{k}-4\lambda(\hat{j}-3\hat{k})$
c) $\hat{i}-2\hat{j}+8\hat{k}-4\lambda(3\hat{i}-4\hat{k})$	d) $\hat{i}+2\hat{j}-4\hat{k}+\lambda(4\hat{j}+12\hat{k})$
20. The straight line $\frac{x-2}{3} = \frac{y-3}{1} = \frac{z+1}{0}$ is	
a) parallel to the y-axis	b) perpendicular to the z-axis
c) parallel to the x-axis	d) parallel to the z-axis
21. The straight line $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$	
a) is parallel to z-axis	b) lies in yz plane
c) lies in xy plane	d) lies in zx plane
22. If the lines $\frac{x-1}{2} = \frac{y-k}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-k}{k}$	$\frac{1}{2}$ = z intersect, then the value of k is:
a) 1	b) 4
c) -2	d) 2

Section D

23. Find the shortest distance between the following lines.

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{-1}, \frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$$

24. Find the shortest distance between the pairs of lines whose vector equations are:

- $ec{r}=(\lambda-1)\hat{i}+(\lambda+1)\hat{j}-(1+\lambda)\hat{k}$ and $ec{r}=(1-\mu)\hat{i}+(2\mu-1)\hat{j}+(\mu+2)\hat{k}$
- 25. Find the co-ordinates of the foot of perpendicular drawn from the point A (1, 8, 4) to the line joining the points B (0, -1, 3) and C (2, -3, -1).
- 26. Find the distance between the line $\vec{r} = (-\hat{i} + 3\hat{k}) + \lambda(\hat{i} 2\hat{j})$ and the line passing through (0, -1, 2) and (1, -2, 3).
- 27. Find the vector and cartesian equations of the line passing through the point (2,1,3) and perpendicular to the lines

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
 and $\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$.

- 28. Find the vector equation of the line passing through the point A(2, -1, 1), and parallel to the line joining the points B(-1, 4,1) and C(l, 2, 2). Also, find the Cartesian equations of the line.
- 29. The cartesian equation of a line is 6x 2 = 3y + 1 = 2z 2. Find the direction cosines of the line. Write down the cartesian and vector equations of a line passing through (2, -1, -1) which is parallel to the given line?

30. Find the image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.